2 years ago
#38546
Martin Mashalov
Multioutput Classification model with FastText supervised classifier
Is there any way I can create a multioutput model with the fasttext python client and the sklearn MultiOutputClassifier object? I have multiple training datasets for each of the target columns. The example below contains the training dataset train_df_addresses.txt
.
import fasttext
from sklearn.multioutput import MultiOutputClassifier
fasttext_params = {
'input': '/content/fastText-0.1.0/train_df_addresses.txt',
'lr': 0.1,
'lrUpdateRate': 1000,
'thread': 8,
'epoch': 10,
'wordNgrams': 3,
#'dim': 100,
'loss': 'softmax'
}
with tensorflow.device('/device:GPU:0'):
model = fasttext.train_supervised(**fasttext_params, verbose=True)
python
machine-learning
scikit-learn
fasttext
0 Answers
Your Answer