2 years ago
#76106
Jonas Van den Borre
Evaluating prediction of model without having to train the model again
So i've searched on the internet and in the documentation to find out i needed to save my model and reload it in another seperate file. Which i did. However, when i run my file to reload the model and predict a different input, the training start al over again. Is there any way to prevent this? Thanks!
First file:
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean_squared_error')
model.fit(x_train, y_train, epochs=25, batch_size=32)
model.save('BTC_model')
Second file:
from tensorflow import keras
model = keras.models.load_model('BTC_model')
python
tensorflow
training-data
0 Answers
Your Answer